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A quantum-admixture model for the d6 configuration ferrous complex molecules with the high-spinT low-
spin transition has been established by using the unified crystal-field-coupling (UCFC) scheme. A general
study has been made on the spin transition of octahedrally coordinated d6 complexes, and a special application
has been given to an Fe(II) compound FeII(TRIM)2(PhCO2)(ClO4). The results show the following: (i) The
quantum picture of the spin transition of a d6 system, such as Fe(II), is much more complex than a simple
transition between the pure5T2g and1A1g states as usually understood. In practice, owing to spin-orbit coupling,
spin is no longer a good quantum number and there is no longer a pure5T2g or 1A1g state. Each of them splits
into substates and each substate is a linear combination of various multiplets. The high-spinf low-spin
transition of an octahedrally coordinated d6 ion is practically the crossover of the two lowest substates of5T2g

at the critical point. (ii) At the spin-transition critical point the magnetic momentµeff ≈ 5.22µB, which is
obviously different from the simple average of theµeff values of high-spin and low-spin states but near the
saturation value. (iii) The calculation of the effective molecular magnetic momentµeff for an octahedrally
coordinated Fe(II) ion shows that theµeff-T curve is in good agreement with Lemercier et al.’s experiment
and both the low-spin valueµeff ) 0.51µB and the high-spin valueµeff ) 5.4µB are comparable with the
experimental values 0.76µB and 5.4µB, respectively. (iv) TheT dependence of the crystal field parameterDq
in the spin-transition region is approximately linear.

I. Introduction

The ferrous molecules with spin-transition effects, which have
received considerable attention in the past decade, are found in
chemical and biochemical systems. This spin-transition phe-
nomenon arises when the ligand-field splitting energy becomes
comparable with the mean spin pairing energy. At the molecular
scale, it is possible to understand the spin transition as an
intraionic transfer with spin flip of the transferred electrons.
For the ferrous molecules this transfer, depending on the
coordination and distortion of the molecules, may involve either
two electrons or one electron, the former being associated with
the high-spinT low-spin (HST LS) transition and having∆S
) 2, and the latter with the high-spinT intermediate-spin
transition or the intermediate-spinT low-spin transition and
having ∆S ) 1.1-12 To reproduce the spin transition, several
physical models, such as the spin-equilibrium model,13 the
thermodynamical models,14-16 the Ising-like models,17-19 the
vibronic models,20,21 and the quantum-admixture models,22-25

have been proposed and some great progresses have been made.
However, due to the limitation of the weak-field scheme, the
quantum-admixture model for d6 configuration ferrous molecules
with HS T LS transition has not yet been established and up
to now, the physical mechanism and the main interactions that
govern the HST LS transition in ferrous molecules have not
yet been determined.

To understand the physical origin and to determine the main
mechanism of the HST LS transition, chemists have synthe-
sized a number of model complexes. Among those, an especially
important one is the FeII(TRIM)2(PhCO2)(ClO4), which is
prepared by Lemercier et al.1 This interesting model complex
displays a gradual5T2g T 1A1g spin-state conversion and shows
that the effective magnetic momentsµeff in the LS and HS states
are respectively 0.76µB and 5.4µB, being evidently larger than
those usually evaluated by the Curie formulaµeff

2 ) µB
2 gs

2S(S
+ 1), i.e., 0 and 4.9µB. Lemercier et al. have explained this
difference by supposing the existence of some Fe(III) impurity.
However, this viewpoint is not confirmed and theµeff of all
octahedral HS complexes that we know is larger evidently than
4.9µB. A greater challenge that faces the theoretical works is
that, owing to spin-orbit (S-O) coupling, each multiplet of
an Fe(II) ion is split into substates and each substate is a linear
combination of multiplets with different spin and different
symmetry, then spin is no longer a good quantum number and
there is no pure5T2g and 1A1g states. Therefore, it is not
appropriate to regard the spin transition of Fe(II) complex
molecules as a simple transition between5T2g and1A1g. Up to
now there is no microscopic theory that can be used to reveal
how the electronic structure and molecular magnetic property
of a d6 configuration ion in a ligand field changes in a HST
LS spin transition. There is also no reasonable quantum
explanation about the Lemercier et al.’s experimental result.1* Corresponding author. E-mail: zkwxx@263.net.
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In present work, using the unified crystal-field-coupling
(UCFC) scheme crystal field theory,26 we will develop a
quantum theory based upon a concept of standard basis and
standard energy matrix for the electronic structure of 3dn (n )
4, 6) compounds. By this theory we will calculate the electronic
structure, the molecular magnetic moment, and the multiplet
structure of the quantum states of a general octahedrally
coordinated d6 ion and study how these change in a HST LS
spin transition. From this theory a detailed description will be
made for the spin-transition course. Again, an interpretation will
be given for Lemercier et al.’s experiment. In the second part
of the paper, we will introduce the Hamiltonian and construct
for the first time the standard basis in the spin-orbit coupling
representation of the d6 configuration space and the correspond-
ing standard complete energy matrix of an octahedrally coor-
dinated d6 ion. It should be emphasized that although the concept
of standard basis was introduced by Griffith27 for the irreducible
representations of the point groups, our standard basis is defined
for the whole d6 configuration space. The dimension of the
former is only 1-4, whereas that of the latter is 210. Owing to
the special structure of our standard basis, each eigenvector of
the standard energy matrix carries evidently the information
about spin and space symmetry. Only with this we can describe
the change of state in spin-transition course. In the third and
fourth parts, we will calculate the energy levels, states, and the
molecular magnetic moment and describe how they change in
the spin-transition course.

II. From d 4(Oh) Standard Basis to d6(Oh
/) Standard

Energy Matrix

The Hamiltonian of the dn electron configuration of a
transition metal ion in a ligand field (or named crystal field)
can be written as27

In a cubic crystal field it can be simplified as the following
parametrized form:

where H0 is the effective center potential,Hee(B,C) is the
electrostatic interaction between the d-electrons,B and C are
the Racah parameters,VA1(Dq) is the cubic crystal field energy
of the d-electrons,Dq is the crystal field intensity parameter
(also named crystal field intensity),Hso(ú) is the S-O coupling
energy, andú is the S-O coupling parameter. When an applied
magnetic field exists, the following Zeeman energy should be
added to the Hamiltonian,27

whereµB is the Bohr magneton,gs ) 2.0023.
Let Oh stand for the octahedral group andOh

/ the corre-
sponding double group. Hereafter we will use dn(Oh

/) to denote
an octahedrally coordinated dn system with S-O coupling, being
described in a S-O coupling representation, and dn(Oh) to
denote the same system but without S-O coupling, being
described in an uncoupling representation.

To ensure each eigenvector of the matrix of a dn system
should contain evidently the information about the spin multi-
plicity and space symmetry, we will construct the energy matrix
of the Hamiltonian in the standard basis defined according to

the UCFC theory.26 It is well-known that for an energy matrix
of a d4 system, if its parametersDq and ú are replaced
respectively by- Dq and - ú, it will be changed into a d6

matrix. Therefore we need only constructing the d4(Oh) and
d4(Oh

/) matrices. For this, we will first construct a standard
basis of a d4(Oh) system, and then, by linear combinations of
its components, construct a standard basis of a d4(Oh

/) system,
in which we then construct the standard d4(Oh

/) energy matrix.
Due to the special structure of these standard bases, the d4(Oh

/)
matrix, when S-O coupling is omitted, will be a block diagonal
form with blocks cut from the d4(Oh) matrix. Finally, the
d4(Oh

/) matrix, when its parametersDq and ú are replaced
respectively by-Dq and-ú, will become the standard complete
energy matrix of a d6(Oh

/) system.
1. Standard Basis and Energy Matrix of a d4(Oh) System.

In constructing the wave functions of a multielectron system,
the standard d-electron wave functionsθ, ε, ê, η, ú, also named
d orbitals, that have been defined by Grifith27 will be adopted.
An octahedral crystal field separates the d orbitals into two sets,
eg(θ,ε) and t2g(ê,η,ú), the energy space between them is usually
determined as 10Dq. From any four d orbitals dk1, dk2, ..., dk4

we can construct a Slater type determinant wave function,
denoted by|dk1dk2...dk4|. Such Slater functions are orthonormal
and satisfy the requirement of antisymmetry of the Pauli
principle, and by their linear combinations we can obtain all
wave functions of the d4 electron configuration. All these
functions can be divided into sets according to the t2g-electron
numberm and the eg-electron numbern. Each set is called a
strong-field configuration and is denoted by t2

men. The electro-
static interaction between the d-electrons separates the quantum
states belonging to a t2

men configuration into subgsets; each
subgset has a definite spinSand belongs to a definite irreducible
representationΓ of the octahedral groupOh. The whole of the
states of a subset is called a crystal-field term, denoted bySΓ
or 2S+1Γ. The terms permitted for a d4(Oh) system, as well as a
6(Oh) system, are listed below according to a definite order and
with their suffix g omitted:

Each term can include states, which can be distinguished by
the strong-field configuration that they belong to. Of each term
the states will be numbered according to the order defined by
Griffith.27 TheSΓ terms of the special strong-field configurations
t2g

m and egn have been given by Griffith.27 Of theseSΓ terms
the wave functions of all the states havingM ) S have been
given in theSΓMγ quantization representation (M is the spin
magnetic quantum number,γ the real component ofΓ).27 These
special strong-field term wave functions are denoted respectively
as |t2m(SΓMγ)〉 and |en(SΓMγ)〉; each is a linear combination
of Slater functions. With these functions we can construct
strong-field term wave functions|t2m(S1Γ1)en(S2Γ2)SΓMγ〉 of all
general terms t2

men by the following formula,

The notations〈S1S2M1M2|SM〉 and 〈Γ1Γ2γ1γ2|Γγ〉 are respec-
tively the Wigner and CG coefficients given by Griffith.27 Γ is
generated by couplingΓ1 andΓ2, andM is generated by coupling
M1 and M2, requiring M1 + M2 ) M. Between the states

H ) ∑
κ)1

n { 1

2m
pκ

2 -
Ze2

rκ

+ ê(rκ)lκ‚sκ + V(r κ)} + ∑
κ<λ

n e2

rκλ

H ) H0 + Hee(B,C) + VA1(Dq) + Hso(ú) (1)

HZeeman) µBĤ‚(L̂ + gsŜ) (2)

5E, 5T2,
3A1,

3A2,
3E, 3T1,

3T2,
1A1,

1A2,
1E, 1T1,

1T2 (3)

|t2m(S1Γ1)e
n(S2Γ2),SΓMγ〉 )

∑
M1M2

〈S1S2M1M2|SM〉∑
γ1γ2

〈Γ1Γ2γ1γ2|Γγ〉‚

|t2m(S1Γ1M1γ1)〉 X |en(S2Γ2M2γ2)〉 (4)
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|t2m(SΓMγ)〉 and |en(SΓMγ)〉 in (4) we defined a special
multiplication, denoted by the operatorX and named “direct
multiplication”, to overcome the difficulties in antisymmetrizing
the product functions by usual multiplication. Direct multiplica-
tion generates a (m + n) × (m + n) Slater determinant from an
m × m and ann × n Slater determinant according to the
following formula,

It is automatically antisymmetric. For example, we have
|ú+ú-η+| × |θ+ε-| ) |ú+ú-η+θ+ε-|. As a stipulation we write
first the t and then the e electrons in a determinant.

We define such an ordered set formed by the 210 strong-
field term wave functions (4) as the standard basis of a d4(Oh)
system. Each function is a component of this basis and thus we
call it a basis function. In this basis the electrostatic matrix is
a block diagonal form. Each block belongs to a definiteSΓ term
and we call it theSΓ block. Such blocks are degenerate forM
andγ. TheSΓ blocks are the same as that given by Griffith.27

The crystal field matrix is an entirely diagonalized form, of
which the diagonal elements are calculated by the following
formula,

Then we have obtained the d4(Oh) standard energy matrix of
Hee(B,C) + VA1(Dq). It is also anSΓ block diagonal form and
each block is the electrostaticSΓ block if the corresponding
crystal field elements (5) are added on the diagonal of the latter.

2. Standard Basis of a d4(Oh
/) System.Now we consider

the S-O coupling of a state described by a strong-field term
wave function in (4), which can be abbreviated as|q,SΓMγ〉,
whereq stands for the strong-field configuration t2

m(S1Γ1)en-
(S2Γ2). In general,|q,SΓMγ〉 cannot be written as a form having
its space and spin separated, as|q,Γγ〉|SM〉. However, under a
rotation of the spin space and/or a point-symmetric operation
in the coordinate space, the behavior of the two forms is exactly
the same. Therefore, in any treatment based on pure group
theory, |q,SΓMγ〉 can be replaced by|q,Γγ〉|SM〉 and again
|q,Γγ〉 can be replaced by|q,S°ΓM° γ〉, which is the function
|q,SΓMγ〉 but having its spin frozen andM ) S. With the word
“frozen” we mean that the function cannot be operated by any
spin operator or/and group element in spin space. Now consider
the spin states|SM〉. With these states we can obtain a set of
symmetrically matched standard basis functions|Γ̃γ̃〉 according
to the formula

It forms theγ component of the irreducible representationΓ of
Oh

/. These functions are

Therefore we have

Then, in any treatment based on pure group theory, we will
apply the following replacement,

Obviously, for anyqi, the whole of the following product
functions forms a representation of the direct productΓ × Γ̃,

In the Oh
/ group Γ × Γ̃ can be reduced into irreducible

representations, denoted byΓ′:

whereâ is used to distinguish the repeatedΓ’s. It can be seen
from (9) that the basis functions ofΓ′(Oh

/) can be formed by
linear combinations of the product functions in (8). For anyqi

we write such a basis function as|qi,SΓΓ̃âΓ′γ′〉 and we have

where〈ΓγΓ̃γ̃|âΓ′γ′〉 is the CG coefficient corresponding toΓ
× Γ̃ f âΓ′. (10) gives a set of 210 S-O coupling states
(whereas the states in (4) are uncoupling states). It is a linearly
independent and complete function set, which forms a repre-
sentation of the d4 electron configuration space, named S-O
coupling representation orSΓΓ̃âΓ′γ′ quantization representation.
Therefore the 210 functions in (10) are the d4(Oh

/) basis
functions; in constructing them, only the d4(Oh) basis functions
with M ) S are needed and the others need not be known.

We divide the d4(Oh
/) basis functions into 10 sets according

to differentΓ′γ′. Each set is called aΓ′γ′ term. They are listed
according to a definite order as follows,

In the parentheses after a term symbol is the number of basis
functions belonging to that term. We number the functions in
eachΓ′γ′ term according to the orderS, Γ, Γ̃, q and define
such an ordered set of the 210 functions as the standard basis
of a d4(Oh

/) system.
3. Standard Energy Matrices of d4(Oh

/) and d6(Oh
/) Sys-

tems.The matrix of Hamiltonian (1) constructed in the d4(Oh
/)

standard basis is called d4(Oh
/) standard matrix. Because

Hamiltonian (1) belongs to the representationA1 of Oh
/, this

matrix is a block diagonal form and each block belongs to a
definite Γ′γ′ term; thus we denote it also byΓ′γ′. Then the
symbols in (11) represent also such ten blocks. The blocks with
the sameΓ′ are identical. The complete matrix is a sum of the
matrices of all operators included in the Hamiltonian; therefore
we need only construct respectively the matrix of each operator
in the d4(Oh

/) standard basis, as will be done below.
(1) Matrix of Hee(B,C) + VA1(Dq). Obviously this matrix is

also a block diagonal form with 10Γ′γ′ blocks, each is again
a block diagonal form with someSΓ blocks cut from the d4-
(Oh) standard matrix.

(2) Matrix of Hso(ú). Obviously this matrix is also a diagonal
form with 10Γ′γ′ blocks. EachΓ′γ′ block can be divided into

|SM〉 ) ∑
Γ̃γ̃

〈Γ̃γ̃|SM〉|Γ̃γ̃〉 (7)

|q,S°ΓM° γ〉|Γ̃γ̃〉 f |q,SΓMγ〉

|qi,S°ΓM° γ〉|Γ̃γ̃〉 (8)

Γ × Γ̃ ) ∑âΓ′ (9)

|qi,SΓΓ̃âΓ′γ′〉 ) ∑
γγ̃

〈ΓγΓ̃γ̃|âΓ′γ′〉|qi,S°ΓM° γ〉|Γ̃γ̃〉 (10)

A′1(14),A′2(8), E′θ(19),E′ε(19),T′1x(23),T′1y(23),

T′1z(23),T′2ê(27),T′2η(27),T′2ú(27) (11)

|dk1dk2 ‚‚‚ dkm| X |dp1dp2 ‚‚‚ dpn|)|dk1dk2 ‚‚‚ dkmdp1dp2 ‚‚‚ dpn|

〈t2
men,SΓMγ|VA1|t2men,SΓMγ〉 ) (6n - 4m)Dq (5)

|Γ̃γ̃〉 ) ∑
M

〈SM|Γ̃γ̃〉|SM〉 (6)

S Γ̃γ̃
0 A1a1 ) |0,0>
1 T1x ) (i/x2)(T11 - T1 - 1) ) (i/x2)(|11〉 - |1 - 1〉)

T1y ) (1/x2)(T11 + T1 - 1) ) (1/x2)(|11〉 + |1 - 1〉)
T1z ) -iT10 ) - i|10〉

2 Eθ ) |20〉
Eε ) (1/x2)(|22〉 + |2 - 2〉)
T2ê ) (i/x2)(T21 - T2 - 1) ) (i/x2)(|2 - 1〉 + |21〉)
T2η ) (1/x2)(T21 + T2 - 1) ) (1/x2)(|2 - 1〉 - |21〉)
T2ú ) -iT20 ) - (i/x2)(|22〉 - |2 - 2〉)
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SΓ blocks. EachSΓ block belongs to twoSΓ terms, e.g.,S1Γ1

andS2Γ2. The elements in aSΓ block can again be divided into
Γ̃â blocks. EachΓ̃â block belongs to twoΓ̃â. The (i,j)th element
in a Γ̃â block can be calculated with the following formula,

whereK′ is the transfer coefficient. We have

Except S1 ) S2 ) 0 the reduced matrix elements
〈qiS1Γ1||V1T1||qjS2Γ2〉 in (12) can be calculated with the following
formula,

whereM1 ≡ S1, M2 ≡ S2, and γ* ≡ S1 - S2, dim(Γ) is the
dimension ofΓ, γ1 andγ2 can be selected arbitrarily as long as
the CG coefficient〈Γ2γ2T1 - γ* |Γ1γ1〉 * 0. WhenS1 ) S2 )
0, we haveK′ ) 0; thus the corresponding reduced matrix
elements need not be known.

To ensure the S-O matrix element between two basis
functions, e.g.,f1 andf2, does not vanish, the necessary condition
in the S-O coupling representation is thatf1 and f2 belong to
the sameΓ′γ′; in the uncoupling representation the condition
is thatS1 - S2 ) (1 or 0 andT1 ∈ Γ1 × Γ2.

(3) Zeeman Energy Matrix.To establish the Zeeman energy
matrix, we need only establish the matrices of the angular
momentums.

(a) Matrix of Spin Angular Momentum.The matrix of a spin
operatorSγj (γj ) x, y, z, 1, 0, -1, +, -) constructed in the
d4(Oh

/) standard basis can be divided in to blocks according to
eachΓ′γ′ pair. The elements in eachΓ′γ′ block can be divided
into subblocks according to eachSΓΓ̃ pair. SuchSΓΓ̃ subblocks
are diagonal forSΓ and depend onΓ̃, and the elements in each
are diagonal and degenerate forq. Therefore only the elements

in eachSΓ term cannot be zero; those can be calculated by the
following formula:

(b) Matrix of Orbital Angular Momentum.Because each basis
function is a linear combination of Slater determinants, themth
basis function can be written as

whereWm,k is thekth determinant,Rm,k is its coefficient,Nm is
the number of determinants. Then the matrix element of an
orbital angular momentumLγj ) ∑l γj (γj ) x, y, z) betweenfm
andfn can be written as a linear combination of single electron
matrix elements〈di|lγj|dj〉:

where di is theith orbital in the d orbital series (θ, ε, ê, η, ú, θh,
εj, êh, ηj, úh) andbij(m,n) is the combination coefficient.

The standard complete energy matrix of a d4(Oh
/) system is

the sum of the above matrices. When the parametersDq andú
are replaced by-Dq and-ú, the d4(Oh

/) matrix will become a
standard d6(Oh

/) matrix.

III. Changing of Energy Levels and States under Spin
Transition

To describe the expansion of d orbitals of a transition metal
ion caused by ligand field, we define a d orbital reduction factor
N, which is similar to the covalency factor in the Curie
formula.28 The valueN depends on the crystal field intensity
and the covalency of the complex. Following the Curie
formula,28 the parametersB, C, andú in the matrix elements
may be approximately expressed as

whereB0, C0, andú0 are the corresponding parameters of the
ion in a free state and can be determined by its spectrum. For
Fe(II), B0 ) 3901,C0 ) 1058, andú0 ) 410 cm-1. However,
we will also adopt these values in the general studies for any
d6 ions. Then, for a given value ofN, the electronic structure
and the character in optics and magnetics of the system are
entirely determined by the crystal field intensityDq and
independent of the details of the ligands. In our calculations
we will take a typical value ofN and a set of values ofDq to
calculate the eigenvalues and eigenfunctions of the system for
eachDq.

For a d6(Oh) ion with out S-O coupling, it can be seen from
the Sugano diagram obtained from the d6(Oh) matrix that in a

[Sγj] ij ) 〈qSΓΓ̃1âiΓ′1γ′1|Sγj|qSΓΓ̃2âjΓ′2γ′2〉

) ∑
γγ̃1γ̃2

〈ΓγΓ̃1γ̃1|âiΓ′1γ′1〉〈ΓγΓ̃2γ̃2|âjΓ2′γ2′〉

〈Γ̃1γ̃1|〈qS°ΓM° γ|Sγj|qS°ΓM° γ〉|Γ̃2γ̃2〉

) ∑
γγ̃1γ̃2

〈ΓγΓ̃1γ̃1|âiΓ′1γ′1〉〈ΓγΓ̃2γ̃2|âjΓ′2γ′2〉〈Γ̃1γ̃1|Sγj|Γ̃2γ̃2〉

(15)

fm ) ∑
k)1

Nm

Rm,kWm,k

Lγj(m,n) ) 〈fm|Lγj|fn〉 ) ∑
k)1

Nm

∑
l)1

Nn

Rm,kRn,l〈Wm,k|Lγj|Wn,l〉

)∑
i,j)1

10

bij(m,n)〈di|lγj|dj〉 (16)

B ) N4B0 C ) N4C0 ú ) N2ú0 (17)

Hij
so(Γ′,S1Γ1Γ̃1â1,S2Γ2Γ̃2â2)

≡ 〈qiS1Γ1Γ̃1â1Γ′γ′|Hso|qjS2Γ2Γ̃2â2Γ′γ′〉

) 〈qi,S1Γ1Γ̃1â1Γ′γ′| ∑
γ*)-1

+1

Vγ*-γ*
1T1 (-1)1+γ*|qj,S2Γ2Γ̃2â2Γ′γ′〉

) ∑
γ1γ̃1γ2γ̃2

[〈Γ1γ1Γ̃1γ̃1|â1Γ′γ′〉〈Γ2γ2Γ̃2γ̃2|â2Γ′γ′〉‚

∑
M1M2

〈Γ̃1γ̃1|S1M1〉〈S2M2|Γ̃2γ̃2〉‚

∑
γ*)-1

1

(-1)1+γ*〈S1M1|〈qi,S° 1Γ1M° 1γ1|Vγ*-γ*
1T1 |qj,S° 2Γ2M° 2γ2〉|S2M2〉]

) K′ 〈qiS1Γ1||V1T1||qjS2Γ2〉 (12)

K′ ≡ K′(Γ′,S1Γ1Γ̃1â1S2Γ2Γ̃2â2)

) ∑
γ1γ2M1M2[ 1

x(2S1 + 1)λ(Γ1)

‚

∑
γ̃1

〈Γ̃1γ̃1|S1M1〉〈Γ1γ1Γ̃1γ̃1|â1Γ′γ′〉∑
γ̃2

〈S2M2|Γ̃2γ̃2〉〈Γ2γ2Γ̃2γ̃2|â2Γ′γ′〉‚

∑
γ*)1

-1

(-1)1+γ*‚〈S1M1|S2M21γ* 〉〈Γ1γ1|Γ2γ2T1 - γ* 〉] (13)

〈qiS1Γ1||V1T1||qjS2Γ2〉 )

(-1)S2-S1-1x(2S1 + 1) dim(Γ1)

〈S2M21γ|S1M1〉〈Γ2γ2T1 - γ* |Γ1γ1〉
‚

〈qiS1Γ1M1γ1|Hso|qjS2Γ2M2γ2〉 (14)
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wide region ofDq the lowest two states will be1A1 and 5T2.
The energy difference is, if neglecting the configuration
interactions,

Which state is the ground one is determined by the sign ofδ,
i.e., determined by the competition of the crystal field energy
(20Dq) and the electrostatic energy (8C + 5B). When the crystal
field energy reaches a balance with the electrostatic energy, i.e.,
whenδ ) 0, the two states will intersect with each other, thus
leading to spin transition. Therefore the critical crystal field
intensityDqc is determined by the transition condition

Using the approximation formula (17),Dqc will be entirely
determined byN through the following formula:

However, in a real d6(Oh
/) system the S-O coupling will break

eachSΓ term into several substates and causes a term mixture.
Each eigenfunction will be a linear combination of substates
with different spins and different symmetries and thus there is
no pure1A1 or 5T2 state. Therefore the real spin transition course
can only be sought in the substates of1A1 and 5T2 and the
transition point will be changed.

When the system is certainly in HS or LS state, the symbol
Γ′(SΓ), e.g.,A′(5T2), is customarily used to stand for a S-O
splitting substate of theSΓ term that belongs to the irreducible
representationΓ′ of Oh

/. So SΓ is the mother term ofΓ′(SΓ)
and also its main multiplet component. However, if the system
is in a course of spin transition, the multiplet components in an
eigenstate will be, in general, gradually changed and cannot be
certain and thus need a dynamic description. Now, to give a
detailed description of the spin transition course, we introduce
a dynamic notationΓ′,k(S1Γ1-S2Γ2), e.g., A′1,1(

5T2-1A1), to
stand for thekth eigenvalue as well as the corresponding set of
eigenstates of theΓ′γ′ block according to ascending order. Such
a notation represents an eigenstate changing from a quasi-
S1Γ1(Oh) state into a quasi-S2Γ2(Oh) state whenDq increases to
lead to a HSf LS spin transition. That is, its mother term is
S1Γ1(Oh) whenDq is small butS2Γ2(Oh) whenDq is large.

In Table 1 we list the lowest seven eigenvalues (corresponding
to 16 eigenstates) for eachDq-Dqc; the corresponding energy
curves are given in Figure 1. The changes in the multiplet
fraction in the lowest 25 eigenstates (corresponding to 11
eigenvalues) are shown in Table 2. The changes in the HS
fraction of the most important three sets of eigenstates are shown
in Figure 2.

It can be seen from Figure 1 and Table 2 that for the HSf
LS spin transition the lowest substateA′1,2(

1A1-5T2) of 1A1

transfers its1A1 component to the substateA′1,1(
5T2-1A1) of

5T2, and the latter crosses the lowest substateT′2,1(
5T2-5T2) of

5T2 at the critical point. They are the states that undertake direct
responsibility for this spin transition. The spin-transition process
will be described in detail in what follows.

From Table 2 we can see that, for small values of
Dq, A′1,1(

5T2-1A1) and T′2,1(
5T2-5T2) are almost 5T2,

A′1,2(
1A1-5T2) is almost1A1, A′1,3(

3T1-3T1) is almost3T1. With
increasingDq, a change of multiplet fraction occurs in and only
in A′1,1(

5T2-1A1) and A′1,2(
1A1-5T2). At any moment the

decrease of the HS fraction inA′1,1(
5T2-1A1) is equal to the

increase of that inA′1,2(
1A1-5T2) (see also Figure 2), the

increase of the LS fraction inA′1,1(
5T2-1A1) is equal to the

decrease of that inA′1,2(
1A1-5T2). That is, multiplet compo-

nents exchange betweenA′1,1(
5T2-1A1) and A′1,2(

1A1-5T2).
This is because a S-O coupling can occur between each of
them and the quasi-3T1 state A′1,3(

3T1-3T1), although this
coupling cannot occur directly between them. Such an exchange
changesA′1,1(

5T2-1A1) from a quasi-5T2 gradually into a quasi-
1A1 state, andA′1,2(

1A1-5T2) from a quasi-1A1 into a quasi-5T2

state. At the same time, the energy curve ofA′1,2(
1A1-5T2)

descends gradually toA′1,1(
5T2-1A1) and then begins to as-

cend, butA′1,1(
5T2-1A1) descends continuously owing to the

TABLE 1: Lowest Seven Eigenvalues (cm-1) of a d6(Oh
/) Systema

Dq-Dqc (cm-1)

32 -24 -16 -8 0 8 16 24 32

0 (T′2) 0 (T′2) 0 (T′2) 0 (T′2) 0 (T′2) 0 (A′1) 0 (A′1) 0 (A′1) 0 (A′1)
162 (E′) 161 (E′) 161 (E′) 153 (A′1) 14 (A′1) 131 (T′2) 280 (T′2) 430 (T′2) 581 (T′2)
178 (T′1) 178 (T′1) 177 (T′1) 161 (E′) 161 (E′) 292 (E′) 440 (E′) 589 (E′) 740 (E′)
363 (A′1) 337 (A′1) 270 (A′1) 177 (T′1) 177 (T′1) 308 (T′1) 457 (T′1) 606 (T′1) 757 (T′1)
424 (T′1) 424 (T′1) 423 (T′1) 423 (T′1) 414 (A′1) 538 (A′1) 682 (A′1) 828 (A′1) 976 (A′1)
446 (T′2) 445 (T′2) 445 (T′2) 428 (A′1) 422 (T′1) 553 (T′1) 700 (T′1) 850 (T′1) 1000 (T′1)
677 (A′1) 550 (A′1) 464 (A′1) 444 (T′2) 444 (T′2) 574 (T′2) 723 (T′2) 872 (T′2) 1022 (T′2)
a Calculated withB0 ) 3901,C0 ) 1058,ú0 ) 410 cm-1, N ) 0.95, andH ) 0. The value ofDq at the critical point isDqc ) 1373.95 cm-1.

The symbol in parentheses following an eigenvalue is theOh
/ irreducible representation that the corresponding eigenstates belong to. The

degeneracy of an eigenvalue that belongs to A′1, E′, T′1, and T′2 are respectively 1, 2, 3, and 3.

δ ) E(1A1) - E(5T2) ) 8C + 5B - 20Dq (18)

20Dq ) 8C + 5B (19)

20Dqc ) (8C0 + 5B0)N
4 (20)

Figure 1. Lowest seven energy levels of a d6(Oh
/) system near the

spin-transition critical point. Calculated withB0 ) 3901,C0 ) 1058,
ú0 ) 410 cm-1, N ) 0.95, andH ) 0, leading toDqc ) 1373.95 cm-1.
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increase in its1A1 fraction; thus they do not intersect. When
Dq reaches a threshold point, the continuously descending
A′1,1(

5T2-1A1), in which the 1A1 fraction already dominated,
intersects withT′2,1(

5T2-5T2) and becomes the ground state,
thus leading to an HSf LS spin transition. Such a threshold
point is the spin-transition point, and such aDq value is called
the critical crystal field intensity, denoted byDqc. Thus it can
be seen that the HSf LS spin transition is an intersection
between two substates of5T2 instead of an intersection between
1A1 and 5T2. Figure 2 shows the curves of the HS fraction of
A′1,1(

5T2-1A1), A′1,2(
1A1-5T2), and T′2,1(

5T2-5T2) vs Dq-Dqc.

Let us examine the multiplet fraction in the ground state. In
our opinion, around the critical point, the ground state is the
approximately degenerate state formed by the lowest eigenstates
A′1,1(

5T2-1A1) andT′2,1(
5T2-5T2), they are close to each other

and far from the upper levels. The degeneracy of
A′1,1(

5T2-1A1) and T′2,1(
5T2-5T2) are 1 and 3, respectively,

their HS fractiona at the critical point are 0.054 and 0.9984
(see Table 2 and Figure 2), respectively; thus the HS fraction
in the ground state isøHS ) (0.054+ 3 × 0.9984)/4) 0.7623
instead of the arithmetic average value 0.5. This is to say, the
point at whichøHS ) 0.5 is not the spin-transition point. The
change of HS and LS fractions in the ground state are shown
respectively by the curvesøHS and øLS in Figure 3. The HS

fraction in the lowest eigenstate, as described by curve b,
changes abruptly at the critical point from 0.054 to 0.9984.

Finally we give an approximate formula for calculating the
real critical crystal field intensityDqc of an octahedrally
coordinated Fe(II) as follows

For N ) 0.95, we have nowDqc ) 1373.95 cm-1. An increase
in N means a decrease in the d orbital expansion, leading to an
increase inDqc. If the relation betweenDq and temperatureT
is known, one can determine the spin transition temperatureTc

by Dqc and thus byN. Considering that, besides temperature,
other perturbations may also changeDq and lead to spin
transition, we prefer to takeDq rather thanT as the argument
in a general study of spin transition.

IV. Molecular Magnetic Behavior in Spin Transition

The molecular magnetic properties of HS and LS states are
essentially different, and in a HSa LS spin transition it will
change from one case into another. The molecular effective
momentµeff can be calculated by the Van Vleck formula:27

TABLE 2: Fractions of the Main Multiplets in the Lowest 25 Eigenstates of a d6(Oh
/) Systema

Dq - DqC (cm-1)

state multiplet -32 -24 -16 -8 0 8 16 24 32

A′1,1(
5T2-1A1) 5T2 .8840 .7191 .3572 .1267 .0540 .0283 .0169 .0111 .0078

1A1 .0915 .2493 .6056 .8389 .9150 .9432 .9563 .9635 .9680
A′1,2(

1A1-5T2) 5T2 .1030 .2676 .6291 .8593 .9316 .9570 .9679 .9733 .9762
1A1 .8824 .7253 .3698 .1371 .0616 .0341 .0216 .0150 .0111

A′1,3(
3T1-3T1) 3T1 .9620 .9625 .9628 .9631 .9634 .9637 .9638 .9640 .9641

T′2,1(
5T2-5T2) 5T2 .9985 .9984 .9984 .9984 .9984 .9984 .9984 .9983 .9983

T′2,2(
5T2-5T2) 5T2 .9934 .9932 .9930 .9928 .9926 .9923 .9921 .9918 .9915

T′2,3(
3T1-3T1) 3T1 .9920 .9918 .9916 .9914 .9911 .9909 .9906 .9903 .9901

E′,1(5T2-5T2) 5T2 .9942 .9940 .9939 .9938 .9936 .9935 .9933 .9931 .9930
E′,2(3T1-3T1) 3T1 .9921 .9920 .9919 .9917 .9916 .9915 .9914 .9913 .9911
T′1,1(

5T2-5T2) 5T2 .9965 .9964 .9964 .9963 .9962 .9961 .9960 .9959 .9958
T′1,2(

5T2-5T2) 5T2 .9910 .9908 .9905 .9903 .9900 .9897 .9894 .9891 .9888
T′1,3(

3T1-3T1) 3T1 .9883 .9880 .9877 .9874 .9871 .9867 .9864 .9860 .9856

a Calculated withB0 ) 3901,C0 ) 1058,ú0 ) 410 cm-1, N ) 0.95, andH ) 0. The criticalDq is Dqc ) 1373.95 cm-1. A rapid change in
multiplet fraction can be seen only in the eigenstatesf1(A′1) and f2(A′1). The multiplet components in other eigenstates remain almost unchanged.

Figure 2. HS fractionøHS in the most important three sets of eigenstates
of an octahedrally coordinated d6 ion. Calculated withB0 ) 3901,C0

) 1058, ú0 ) 410 cm-1, N ) 0.95, andH ) 0, leading toDqc )
1373.95 cm-1. The HS fractions ofA′1,1(

5T2-1A1) and A′1,2(
1A1-5T2)

become equal whenDq-Dqc = -18.75 (cm-1).

Figure 3. HS and LS fractions in the ground state of a d6(Oh
/) ion.

Calculated near the spin-transition critical point, withB0 ) 3901,C0

) 1058, ú0 ) 410 cm-1, N ) 0.95, andH ) 0, leading toDqc )
1373.95 cm-1. The direction of the abscissa is opposite to that in Figures
1 and 2.

Dqc ) -17.9N+1703.3585N3.95 (21)

µeff
2 ) 3kT

∑
i

[(Wi
(1))2/kT - 2Wi

(2)]e-Wi
(0)

/kT

∑
i

e-Wi
(0)/kT

(22)
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whereWi
(0), Wi

(1) andWi
(2) are the first three coefficients in the

following expanded form of the eigenvalues of the complete
energy matrix in terms ofH′ ) âH, where H is the weak
magnetic field andâ is the Bohr magneton.

Giving three values forH′, we can obtain three such expanded
forms, and if we cut off the terms higher thanH′2, we can
calculate theWcoefficients from the three equations. It is known
from the Van Vleck theorem27 that the calculation ofµeff may
be carried out in a cubic field approximation if the matrix
elements of the low-symmetry field are all smaller thankT (at
room temperaturekT ≈ 200 cm-1).

In what follows we will discuss the changing rule ofµeff in
the spin transition based on the calculation results withB0 )
3901,C0 ) 1058,ú0 ) 410 cm-1, B ) N4B0, C ) N4C0, andú
) N2ú0.

1. µeff-Dq Curves for Different N and Fixed T. In Figure
4 a set of curves ofµeff vs Dq has been given forN ) 0.7, 0.8,
0.9, 1.0 and fixedT ) 300 K. All curves intersect approximately
at one point, which is the spin-transition critical point and
corresponds toµeff ≈ 5.22µB, near the saturated value 5.5µB.

2. µeff-Dq Curves for Different T and Fixed N. In Figure
5 a set of curves ofµeff vs Dq has been given forT ) 100, 200,
300, 400 K and fixedN ) 0.95. All curves intersect ap-

proximately at one point, which is the spin-transition critical
point and corresponds toµeff ≈ 5.22µB, near the saturated value
5.5µB.

3. µeff-T Curve. In above two sections we have obtained a
group of theoreticalµeff-Dq curves. To obtain theµeff-T
relation, we must obtain theT dependence ofDq. It is well-
known thatDq is generally expressed as

with

wheree is the charge of an electron,q0 is the effective charge
of a ligand,Rd(r) is the radial wave function of the d electrons,
r is radial coordinates, andR is bond length. It is obvious that
Dq is a function ofR. BecauseR depends onT, Dq depends on
T. An increase inT leads to an increase inR by pure thermal
expansion; this increase inR leads to a decrease inDq according
to the above formula. This is only one side of the problem.
The other side, the most important, is, in the neighborhood of
the spin-transition critical point, the above decrease inDq leads
to a rapid increase in the HS fraction of the ground state that
leads to a rapid increase inR, from the smaller LS bond length
toward the larger HS bond length; this increase inRagain leads
to a further decrease inDq. This is a positive feedback effect,
as graphically shown below,

It is this positive feedback effect that leads to the spin transition
from the LS into the HS state. TheT dependence ofDq is so
complicated that it is impossible to obtain by a pure theoretical
method. In what follows we will seek it by a method of
combining theory with experiments.

The calculation results in paragraph 1 and 2 of section IV
show an important feature of the octahedrally coordinated d6

ions that the effective molecular magnetic moment at the spin-
transition point isµeff ≈ 5.22µB. On the other hand, this value
in the experimentalµeff-T curve1 for the Fe(II) ion corresponds
to T ) 270 K. That is to say, the spin-transition temperature of
the Fe(II) ions isTc ≈ 270 K. Again, we found that the shape
of our theoreticalµeff-Dq curves (see Figures 4 and 5) are
similar to the experimentalµeff-T curve.1 If the theoretical
µeff-Dq curves correspond to a function relation

and the experimentalµeff-T curve corresponds to

and if the two kinds of curves are strictly similar, then we have

Thus we have

Figure 4. µeff-Dq cures of a d6 ion at T ) 300 K. Curves 1-4
correspond toN ) 0.7, 0.8, 0.9, 1.0, respectively. For all curves,µeff

≈ 5.2 at the spin-transition point, the saturationµeff ≈ 5.5 and the low
spin µeff is greater than zero remarkably.

Figure 5. µeff-Dq curves of a d6(Oh
/) ion with N ) 0.95. Curves 1-4

correspond toT ) 100, 200, 300, 400 K, respectively. For all curves,
µeff ≈ 5.2 at the spin-transition point, the saturationµeff ≈ 5.5, and the
low-spin µeff is greater than zero remarkably.

Ei ) Wi
(0) + H′Wi

(1) + H′2Wi
(2) ... (i ) 1-210) (23)

Dq )
-eq0〈r

4〉

6R5

〈rk〉 ) ∫0

R
Rd

2(r)rkr2 dr + R2k+1∫R

∞
Rd

2(r)r-k-1r2 dr

(LS state) T v w Rv w DqV w Rv w DqV w ‚‚‚ w

(HS state)

µeff ) f(Dq)

µeff ) æ(T)

æ(x) ) f(ax + b)

µeff ) f(Dq)

µeff ) f(aT + b)
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This leads to a linear relationship

wherea andb are constants. Because the similarity of the two
kinds of curves is not strict, theT dependence ofDq should be
approximately linear. From this we introduce a second-order
term and supposeDq-T relation as

wherea0, a1, anda2 are constants and can be determined by
three set of data from theµeff-T experiment1, i.e.,µeff(90K) )
0.76µB, µeff(270K)) 5.22µB, andµeff(293K)) 5.4µB. By fitting
these experimental points, we obtained

These constants show that the second-order term in (24) is
indeed very small. Substituting (24) for theDq in the complete
d6(Oh

/) matrix, we obtained a theoreticalµeff-T curve (Figure
6) and especiallyµeff(90K) ) 0.51µB, µeff(293K) ) 5.4µB, and
µeff(270K) ) 5.28µB. The functional form of (24) comes from
ascending experiments for octahedrally coordinated d6 systems
in the spin-transition region. Of course, its general validity
should be checked by further experiments.

The theoretical results in all the above subsections 1-3 show
that for any octahedrally coordinated d6 ion at the HST LS
spin-transition point theµeff value is approximately 5.22µB

instead of the arithmetic average of the two values in the HS
and LS states, as is usually expected. This is mainly because
the LS and HS states, which are included in the ground state
and intersect each other at the critical point, have degeneracies
of 1 and 3, respectively, and thus have different statistical
weights, and besides, all high levels can contribute toµeff.

V. Conclusions

We have the following conclusions for any octahedrally
coordinated d6 ion.

(1) In the HSf LS spin transition, withDq increasing from
a small value, the lowest substateA′1,2(

1A1-5T2) of 1A1 trans-
fers continually its 1A1 components to the substate
A′1,1(

5T2-1A1) of 5T2, changing the latter continually from a
quasi-5T2 into a quasi-1A1 state, and the latter intersects with

the lowest substateT′2,1(
5T2-5T2) of 5T2 at a certain point. That

is, the spin transition is an intersection between two substates
of 5T2. This is by no means a simple spin transition between
5T2 and1A1.

(2) The Dq value at the spin-transition point is determined
by the intensity of the electrostatic interaction between the
d-electrons and influenced by S-O coupling. In our method, it
is determined by the value of the d orbital reduction factorN.
For Fe(II) ions we haveDqc ) -17.9N + 1703.3585N3.95.

(3) Around the spin-transition critical point, the ground state
is the approximately degenerate state formed by the lowest four
eigenstates, i.e., the nondegenerateA′1,1(

5T2-1A1) and the
3-fold degenerateT′2,1(

5T2-5T2).
(4) At the HST LS spin-transition point, theµeff value is

approximately 5.22µB instead of the arithmetic average of the
values in the HS and LS states as is usually expected.

(5) In either the HS or LS state the value ofµeff is evidently
larger than that calculated by the Curie formulaµeff

2 ) µB
2gs

2S(S
+ 1) and in agreement respectively with the experimental values
5.4µB and 0.76µB of the Fe(II) ion.1 This is because the orbital
magnetic moments have not been completely annihilated by the
crystal field and thus can contribute toµeff. This is true for any
octahedrally coordinated d6 ions and need not be explained by
an influence from Fe(III) impurity as Lemercier et al. supposed.1

(6) The Dq-T relation in the spin-transition region is
approximately linear. As for the Fe(II) ions, our theoretical
values ofµeff and theµeff-T curve agree well with Lemercier
et al.’s experimental findings.1
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